	

	

	

MDI with C#

	by Hersh Bhasin

	Rating: [image: image1.png]

	Multiple Document Interface (MDI) is the application interface made popular by applications like Microsoft Word and Microsoft Excel. This style has become the de facto standard for Windows based applications and is characterized by a window (called the MDI Container) assuming a dominant position, and other windows (called “MDI Child forms”) opening within the MDI Container boundaries. This is the first of a series of three articles in which Hersh Bhasin will expound MDI & Inheritance in C#. In this article, he will discuss various aspects of using menus, toolbars, and context menus in applications.

	Multiple Document Interface (MDI) is the application interface made popular by applications like Microsoft Word and Microsoft Excel. This style has become the de facto standard for Windows based applications and is characterized by a window (called the MDI Container) assuming a dominant position, and other windows (called "MDI Child forms") opening within the MDI Container boundaries.

This is the first of a series of three articles in which I will expound MDI & Inheritance in C#. In this article I will discuss various aspects of using menus, toolbars, and context menus in your application. The second article will concern itself with applying inheritance techniques to create an elegant framework for MDI Child forms. In the third article, I will discuss the theory behind inheritance and how it applies to classes, methods, fields and properties.

Each form in an MDI application can have a menu bar and a tool bar associated with it. The menu bar on the MDI Container form can serve as a "hanger" for the various MDI Child forms that make up the application. The MDI Container menu can in effect serve as the navigation tool for the application. The MDI Child forms can merge the MDI Container menu with its own menu and in this way code can be reused and extended.

Popular use and custom have established certain design guidelines for menu bars. On the MDI Container form, it is usual to have " File " as the first menu item and " Help " as the last. The second last menu item is usually " Window ". The " Window " menu item provides sub menu items that allow you to cascade or tile all open forms. It also provides a "windows-list". The windows-list is a list of all the open forms in the application and the form that has focus has a check mark against its name.

A MDI Child form can have its own menu bar and it can also merge the MDI Container menu bar with its own menu bar. I will describe the process of associating menu bars with forms later, but here I would have you know that attaching a menu bar to a form is as simple as dragging and dropping a MainMenu control from the Visual Studio ToolBox onto the form. If you have a menu bar both on the MDI Container form and on the MDI Child form, then on the MDI Child form you will have a single menu that is a merge of both the menus. In effect you have inherited the MDI Container menu on the MDI Child menu.

A MDI Child form concerns itself with a single aspect of the application. For example, a database centric form would need to provide functionality for record addition, deletion, and modification. It might also provide functionality to sort or filter records. This functionality is provided by methods residing in the body of the MDI Child form. The methods are made accessible by the menu items on the menu bar. It is common to have a toolbar on the MDI Child form. The toolbar is a bar that contains images and icons. Each of these images is associated with a menu item and clicking on them has the same effect as making a menu selection. MDI Child forms can also have context menus. These are menus that pop up when you right click with the mouse.

I will now discuss building various pieces of an MDI application using Visual Studio and C#. I will discuss this topic by building a fictitious accounting application called "Sirius for Windows" (I have build this application using the RC version of Visual Studio.NET). This application will have the following menu structure:

1. Sirius for Windows MDI Container Menu Structure

Descriptive name \ Actual Name

Top level items

File \ mFile

Financial Accounts \ mFinancial

Invoices \ mInvoices

Inventory \ mInventory

Configure \ mConfigure

Windows \ mWindows

Help \ mHelp

Windows sub menus

Tile Vertical \ mTileVert

Tile Horizontal \ mTileHor

Cascade \ mCascade

File sub menus

Exit \ mExit

Financial Accounts sub menus

Masters \ mMasters

Bank/Cash \ mBank

Sale \ mSale

Purchase \ mPurchase

Journal \ mJournal

(dash)

Trial Balance \ mTB

Balance MDI Child \ mBS

Profit and Loss a/c \ mPL

Graphs \ mGraphs

[image: image2.png]

Figure 1: Sirius for Windows menu structure

2. Create a windows application

Create a new windows application by revving up Visual Studio and selecting File/New/Project/Visual C# Projects in the left pane and Windows Application in the right.

[image: image3.png]G

Project Types:

Templotes;

o it @ gl c

{0 setup and Deployment Projects.
{2 other Projects pplcation Control Library.

Windows | Class Lbrary Windowis

{20 visual Studio Solutions

D D &l

ASP.NET Web ASP.NET Web Wb Cortrol
Applcation Service Lbrary.

A projectFor creating an application with a Windos user nterface.

Neme:

Location;

[ror

Project wil be created at FAMDL.

Fhtore.

| C o] ol | e |

Figure 1b: Creating a new Windows Application

3. Create the MDI Container form

Delete the Form1.cs file that is included by default. I am deleting this file because I want to call this form MDIframe.cs. I could have simply renamed this file, however Visual Studio.NET will not change the references to this form in its body. This seems to be a problem in Visual Studio.NET. Try changing the name by right clicking on the form name in the Solutions Explorer and select Rename. Now view the code and search for Form1.cs. You will see that references to Form1.cs still exist. Of course you can do a find and replace to change these references to the new form name.

Right click on the project name in the Solutions Explorer and select Properties. Note that I have set the Default Namespace property to be Sirius. You can specify any namespace here. All your subsequent objects will be created in the namespace you specify here. A namespace is a logical partitioning of an application. Objects residing in the Sirius namespace, and can only be referred to if you provide a fully qualified path. If you change the Default Namespace property here, make sure to change the namespace on pre-existing forms in your application as Visual Studio will not change the namespace on forms that have already been created. It will only do so on forms that are created subsequent to the namespace change.

Add a new form by right clicking on the project name in the Solutions Explorer and selecting Add /Windows Form. Call this form MDIframe.cs. Now code the Main() method on this form. The Main() method is the entry point of the application, and there is only one Main() function in each application. This function is provided in the Form1.cs, which is created by default. Any subsequent forms added to the application will not have this method. Since we deleted Form1.cs, we must code this method ourselves:

 [STAThread]

 static void Main()

 {

 Application.Run(new MdiFrame());

 }

Now right-click on the form and bring up the properties for the form. Set the IsMdiContainer property to True. If you do not see this property, right-click on the colored blocks on the top-left corner of the form and select Properties.

Right click on the project name in the Solutions Explorer and select Properties. Select the Start Up Object property as MDIframe.

[image: image4.png]Fsruscrropenyroges ——— S S
Contiguratin: [N =1 ptorm: WA =l | comgratintensge:.

=3 Common Properties B Application
% General SiriusC
o - =rs 7 [
eteoros P s
oplaton o
B project
e o s, corm
Project Folder CHACSharp{MDIIMDT}
cipi e Frmten

[El Wrapper Assembly for ActiveX/COM Objects
Virapper Assembly Key File
irapper Assembly Key Name

Assembly Name
The name of the output il that wil hold assembly metadsta (manifest).

[Cancel Apply Help

Figure 2: The Start Up Object and the Default Namespace properties of the project.

4. Create the MDI Container menu bar and menu items

· Drag and drop a MainMenu from the toolbar onto the form (or click on the MainMenu control in the ToolBar).

· An object called MainMenu1 will appear at the bottom of the form and a menu bar at the top. The menu bar will have an input box with the caption "Type Here". Replace the word "Type here" with the menu text. Click on a blank area of the menu bar to add additional items. Tab to enter Top-Level menu items. Use the down arrow to enter sub menus. Figure 3 shows the form at this stage.

[image: image5.png]ius for Windows [=[ofx]

Fle Financal Accounts Involces Inventory

Configurs_window
et SR —_—
et S

2 mainttenut

Figure 3: Adding a menu bar.

· To add an accelerator, prefix the menu name with &

· To add a separator line between menu item, replace the default caption "Type Here" with a dash ("-")

· The menu names will be created with sequentially numbered names, for example, menuItem1, menuItem2, etc. To give it a descriptive name, right-click a menu-item and select Edit Name. Now you can give it descriptive names like mnuFile, mnuHelp, etc. You can also change the names by right clicking on the menu item, selecting Properties and modifying the Name property.

· To copy menu items, right-click and copy the menu/menu items, Navigate to the destination menu spot and right-click/paste
· Create the MDI Container menu structure as outlined in Step 1
5. Create a MDI Child form

· Create a MDI Child form by following the steps outlined in step 3

· Call this form MDISheetTest.cs.

6. Create the MDI Child menu bar and menu items

· Create the MDI Child menu structure as outlined below. The process of using the Menu control from the ToolBox and creating it is the same for both the MDI Container and the MDI Child form.

Descriptive name \ Name

Activity \ menuItem1

Sub menus under Activity

Add \ mAdd

Save \ mSave

Delete \ mDelete

Close \ mClose

Set the Merge Order

At this point if you build and run this application (by pressing F5) and open the MDI Child form, you will note that the Activity menu on the MDI Child form appears last and the Windows and Help menus do not appear as the last and second last items on the menu. To fix this, set the MergeOrder property (on the MDIFrame.cs form) of the Configure (mConfigure) menu item to 1, the Windows menu item (mWindows) to 2, and the Help menu item (mHelp) to 3 (you can access this property by right-clicking on the appropriate menu item and selecting Properties and then selecting the property MergeOrder). Now since the Mergeorder of the Activity menu is zero and the other three menu items have MergeOrders greater than the Activity menu item, they will appear after it. Figure 4 shows the MDI Child form with the menu bar.
[image: image6.png]

Figure 4: The menu bar on the MDI Child form.

7. MDI Container form menu scripts

In this step, I will show you how to code the click event of the menu items. I will code the click event for three menu items on the MDI Container menu bar. The first menu item will open the MDI Child form within the boundaries of the MDI Container window. The second menu item allows the user to gracefully exit the application, and the third menu item has sub menu items that perform window management functions like allowing the users to layer or cascade all open MDI Child forms.

To add code to the click event of a menu item, double click the menu item in the form design mode, which will create a blank skeleton of the method call. You can add your code within this skeleton.

[image: image7.png]privhte void nPurchase Click(sbject sender, System.Eventirgs e)
¢

Figure 4B: Method skeleton created by Visual Studio.

a. Opening MDI Child forms within the MDI Container

The MDI Child form (MDISheetTest) should be opened each time the MDI Container menu item called mMasters is clicked. Double click on this menu item in the form design mode and put the following code within the code skeleton that was created by VS.NET. Figure 5 shows how multiple open MDI Child forms appear in an MDI framework.

private void mMasters_Click(object sender, System.EventArgs e)

{

 MDISheetTest NewMDIChild = new MDISheetTest();

 //Set the parent of the new MDI child form.

 NewMDIChild.MdiParent = this;

 //Display the new MDI child form.

 NewMDIChild.Show();}

[image: image8.png]FileFinancial Accounts Inwoices Inventory Activity Configure Window _Help.

=TT

Figure 5: Multiple open MDI Children in a MDI framework.

b. Exit the application (MDI Parent)

The exit menu item on the MDI Container menu bar should gracefully terminate the application after closing any open MDI Child forms. Double click on the mExit menu item and add the following code to the click event:

private void mExit_Click(object sender, System.EventArgs e)

 {

 Form[] childForm = this.MdiChildren ;

 //close all child forms.

 for(int i=0; i < childForm.Length ; i++)

 childForm[i].Close();

 Application.Exit();

 }

c. Windows List

Normally in MDI applications, a list of open MDI Child windows appears under the "Windows" menu option (this is the convention). The MDI Child window that has focus has a check mark against its name in the list.

I assume that you have created a MDI Container menu item called Windows with sub menu items called mCascade, mTile and mTileHor as per our menu design specified in step 1. Set the MDILIST (Properties/Misc/MDILIST) property (right click on the menu item and select Properties) of menu item Windows to True. That's all you have to do to activate the windows-list. Now open a few instances of the Child form (by clicking mMasters). Click and look under the Windows menu item. You will see the list as shown in Figure 6.

[image: image9.png]Flle_Financil Accaunts _Invoices,

Inventory

Activity _Configure

[Ebisheetrest
frelEishectrest
= oisheetrest

O] Eroisheetres:

=T

[-[ofx]
[-[ofx]
[=[ofx]
[_[OIx]

indow _Help
Tie Vertical
Tie Harizortal
Cascade

T MDIshestTest
2MDIsheetTest
3MDIsheetTest
+ 4 MDIshestTest

Figure 6: The windows list.

The Windows menu item has sub menu items to layer and cascade open MDI Child forms. Enter the following code in the click events of sub menu items mCascade, mTile and mTileHor.

· Cascade

· private void mCascade_Click(object sender, System.EventArgs e)

· {

· this.LayoutMdi(MdiLayout.Cascade);

· }

· Layer Vertical

· private void mTile_Click(object sender, System.EventArgs e)

· {

· this.LayoutMdi(MdiLayout.TileVertical);

· }

· Layer Horizontal

· private void mTileHor_Click(object sender, System.EventArgs e)

· {

· this.LayoutMdi(MdiLayout.TileHorizontal);

· }

8. Writing MDI Child Menu Methods

The MDI Child form is intended to handle database data. Thus it needs methods to add, delete and save data to the database. It also needs a method to close the current form. As I am just showing you how to hook up a menu bar to a form and not building an actual database application, I will just display a message box each time the add, save or delete menu items are clicked. Here is the code that should be added to the click events of various menu items.

Coding the Click events of menu items

private void mClose_Click(object sender, System.EventArgs e)

{this.Close();}

private void mAdd_Click(object sender, System.EventArgs e)

{add();}

private void msave_Click(object sender, System.EventArgs e)

{save();}

private void mDelete_Click(object sender, System.EventArgs e)

{delete();}

Now code the add, save and delete methods as follows:

Methods

private void add()

{MessageBox.Show("Add clicked");}

private void save()

{MessageBox.Show("Save clicked");}

private void delete()

{MessageBox.Show("Delete clicked");}

I could have added the code directly in the click event of the various menu items. However you will note that I am forwarding the events to the methods add(), save() and delete(). The advantage of using this technique is that both the menu item and toolbar button can refer to a single method. Another important advantage is that if I inherit from this form, the derived form can override these methods and provide its own implementation of these methods. In my next article, I will demonstrate how derived forms can use the methods created on the base form.

If you intend to have derived forms that inherit from this base form, each of these methods would have a visibility of public (or protected) and would be marked with the keyword virtual. Thus you would code the base add() function as follows:

 public virtual void add()

 {MessageBox.Show("Add clicked");}

The virtual keyword tells the compiler that the add() method of the appropriate instance should be called and that is why the add() method of the derived class is called, instead of the add() method of the base class.

The derived forms would then create methods with the same name but add the keyword override to provide their own implementation of these methods. For example, a form that inherits from the above base form would code the add() method as follows:

 public override void add()

 {MessageBox.Show("Derived Add clicked");}

Thus this technique allows me to create menu items that can fire methods on derived forms. Advanced C# users would point out that I could use delegates to achieve this functionality. However this design strategy allows me to have the same functionality that I would get with using a delegate, without the added complexity.

9. Create a toolbar on the MDI Child form

I will now show you how to attach a ToolBar to the MDI Child form:

· Drag and drop a ToolBar onto the form (Visual Studio gives the default name ToolBar1)

· Experiment with the toolbar by changing various properties as follows:

i)try ToolBar/right click / Property/Appearance = Flat
ii) Try Toolbar/ right click /Property/BoderStyle = None or FixedSingle or Fixed3D

Drag and drop a ImageList on the form (Visual Studio gives default name = ImageList1)
· Now Link the ToolBar with an ImageList by setting the ToolBar/ right click /Properties/ImageList = ImageList1 (This appears as a drop down selection)

[image: image10.png]£
[coolBartsysem wivdaws For. Tocoar |
[E2] 4 [m] # |
5 accessiity -

[

o

sy st
ST

gt e

soenie e

Cusor st

i e

esboristons e

o VrottSns s, 625

Texthlign Underneath b
& ehavior

aovores rabe

e i

tese e

Buttons. {Collection)

ContextMenu (none)

Etied

st

SoToes e

P . -
apeist

button mages,

The ImageLst from which this ToolBar wil get al of the

Figure 6b: Linking the ToolBar and the ImageList.

· Now add some images by selecting ImageList1/ right click /Properties/Images.C lick on the three dots("..."). This brings up the Image Collection Editor. Click on Add. Browse and select a .bmp (or .ico) image. Note that a number (index) is assigned to this bmp. Repeat this process and select a few more bmp's. There are a number of icons supplied and are located in the folder ...program files\ Microsoft Visual Studio.NET\Common7\icons. The Image Collection Editor is shown in the following figure:

[image: image11.png]——

| embers:

===

Jimage Collection ditor

SystemDrawing Btmap Propertis:

System Drawing.Btmap.

genove |

B Misc
HorizortaResalut 36
PhysicalDinensior {Width=16, Height=15
PixeFormat | FormatdbppIndexed
Bmp
16,15
VerticaResolution 36

RanFormat

Help

Figure 6c: The Image Collection Editor

· Add ToolBar Buttons by Selecting ToolBar/ right click /Properties/Buttons and clicking on the three dots ("..."). This brings up the ToolBarsButton Collection Editor. Add Buttons and set the following properties:

i) Add a descriptive Name.
ii) Make the Text property blank
iii) Add a tool tip (the text entered here is displayed when mouse pointer is hovered over the button)

iv) If you need to add separators, select style/separator

v) Set the imageindex property equal to the index of the ImageList bmp that should appear with this Button. The images will appear in the drop down list for you to select.

· Now code the ButtonClick event of the ToolBar (double click on the ToolBar to create a code skeleton) so that a method is called when a button on the toolbar is clicked. These methods were coded in step 8. The ButtonClic k event of the ToolBar is as follows:

private void toolBar1_ButtonClick(object sender, System.Windows.Forms.ToolBarButtonClickEventArgs e)

{

 if (e.Button == this.toolBarButton1)

 {

 add();

 }

 else if (e.Button == this.toolBarButton2)

 {

 save();

 }

 else if (e.Button == this.toolBarButton3)

 {

 this.Close();

 }

 }

10. Create a context menu on the MDI Child form

Context menu is the pop-up menu that appears when you right click on a form. To create this, do the following:

· Drag and drop a ContextMenu control from the toolbox onto a blank portion of the MDI Child form (MDISheetTest.cs).

· An instance of the context menu called contextMenu1 is added to the bottom of the form. Highlight it with your mouse and you will see an object captioned Context Menu at the top of the form. When you single-click it with your mouse, you see the words Type Here. Create menu items as described in step 4. For the purposes of demonstration create two menu items captioned Add and Delete. Right-click on each and select Properties. Give them the names ContextAdd and ContextDelete respectively. Now double-click on each to code their click events as follows:

· private void ContextDelete_Click(object sender, System.EventArgs e)

· {delete();}

· private void ContextAdd_Click(object sender, System.EventArgs e)

· {add();}

· Now associate this ContextMenu with the form. This is done by setting the Forms ContextMenu property to this context menu (this will appear as a drop down selection in the ContextMenu property of the form). Figure 7 shows the context menu on the Masters form.

[image: image12.png]File _Financial Accounts Invoices Inventory Activity Configure ‘indow Help.

MDISheetTest [_[CIx]

Figure 7: The context menu on the Masters form.

Before I conclude this article, I want to provide some tips on compiling the application manually. Working with Visual Studio.NET is great as it automates quite a number of things. However it also creates quite a number of files and folders. The application that we created in this article resides in only two files (four actually as there are also two resources file), but Visual Studio created quite a number of folders and files. This makes the application look more complex than it actually is. I personally use a text editor (TextPad) in conjunction with Visual Studio.NET.

I have provided a folder called SelfCompile in which I put the four files required for this application. These are MDIframe.cs, MDISheetTest.cs, Sirius.MdiFrame.resources and Sirius.MDISheetTest.resources. The resource files are automatically generated by Visual Studio and reside in the sub folder..obj\Debug. These files contain the resources (for example bitmaps) that you use in the application.

I list out all these files in a text file called files.txt, prefixing the resource files with the /res: switch. This file is read by the bat file make.bat that compiles the application to a window exe as follows:

csc /t:winexe /debug+ /r:System.dll /r:System.Data.dll /r:system.windows.forms.dll @files.txt

Summary

I have tried to keep this article quite fast-paced. I have attempted to summarize and consolidate information pertaining to creating C# MDI applications so that a seasoned programmer who is new to C# can have this information at one place. This article concentrated on the GUI and the navigational aspects of a MDI application. In the next article in this series I will attempt to show you how the C# inheritance capabilities can be used with the MDI Child forms to build an elegant windows MDI Child framework.

Article Information

Author

Hersh Bhasin

Technical Editor

Adam Ryland
Project Manager

Helen Cuthill
Reviewers

Shefali Kulkarni, Matthew MacDonald

If you have any questions or comments about this article, please contact the technical editor.

	

	
ASPToday - © 2004 Apress You [1] may print a copy of this article for easier reading or reference, or store the downloaded HTML page on your local machine for your own use. Please check the Terms and Conditions on the ASP Today website for full details of the conditions for distributing this article.

Bottom of Form

