
What is (twice 4) 8

And (twice -1) -2

Can you define twice? Sure. It's

(lambda (x) (* 2 x))

What's (map twice '(4 -1)) (8 -2)

What's (map '(4)) (8)

What should (map '()) be? () sounds like a good idea.

map is part of the language, but here's a

definition anyway.
(define map

 (lambda (f lst)

 (cond

 ((null? lst) '())

 (else (cons (f (car lst)) (map f (cdr lst)))))))

That's old news, isn't it?

What does (map twice (map twice x))

mean?

Multiply each element of x by 4.

Can you express this formally. Sure. How about

(map (lambda (x) (* 4 x)) x)

Does this work? Sure. Remember the distinction between

free and bound variables. The x inside the

lambda expression is bound.

Does (map (lambda (x) (* 4 x)) x) make

happy?

No. It's too different than the original

expression. It would be nice to use twice

in the simplification.

Does this work?

(map (twice twice) x)

No! (twice twice) produces an error

message.

How come? Twice expects a number, not a procedure

argument.

Here's a solution

(map twice (map twice x)) ==

(map (lambda (x) (twice (twice x))) x)

Much better.

Can you see a difference between the two

equivalent expressions?

The first traverses two lists (x, and the

result of the first map application). The

second expression traverses only one list.

Use the following to express the

simplified expression more succinctly.

(define o

 (lambda (f1 f2)

 (lambda (x)

 (f1 (f2 x)))))

We use o to represent function

composition.

(map (o twice twice) x)

Can we use o to simplify (map twice

(map twice x))?

Well, it should be

((o (map twice) (map twice)) x)

Does the work? No!

Why not? Map expects two arguments, and it is

only given one: twice.

Can we fix this problem using the same

kind of trick we used before when

defining o?

Yes, we can do something similar.

Do it!

Is this really elegant? No, but you asked for it!

OK, forget I asked. Let's go back for a

minute. We saw that

(map twice (map twice x)) ==

(map (lambda (x) (twice (twice x))) x)

would this hold for any function, or is it

specific to twice?

Should work.

Let's try to explain it in words. Here's our explanation:

On the left hand side, we apply the

function (let's call it f) to each element of

x, and produce an list of results. We then

apply f to all the elements in the result

list. On the right hand side we apply f

twice to each element of x. The result is

the same.

And if instead of one function we had

two?

(map f (map g x)) ==

(map (lambda (x) (f (g x))) x)

That works too.

Here a new function

(define so-of-twice

 (let ((counter 0))

 (lambda (x)

 (set! counter (+ 1 counter))

 (+ (* 2 x) counter))))

Looks pretty meaningless to us.

Bare with us, please.

What's

(map son-of-twice

 (map son-of-twice '(1 2 3)))

We get (10 17 24)

What's

(map (o twice son-of-twice) '(1 2 3))

(8 18 28)

See the problem? These results should have been equal!

But you promised! It was you! I am only doing what I am

told.

Can we explain what happened? Son-of-Twice behaves a little differently

each time it is invoked, because counter

keeps on changing.

Right. This is called a side-effect. We don't like those, don't we?

Sure don't. Good, I had a feeling this sort of thing

can make a girl cry.

Not to mention grown up programmers.

Was this the only problem we had today?

Don't get me started on the traffic.

No, we are talking about our

manipulation of map expressions.

Well, there's were these problems with

(twice (twice)), and (map twice).

All in a days work. But can't we do better?

Of course we can, that's why we will use

the Haskell language.

But only after we had some pizza, right?

And a tall Chocolate Brownie Frappuccino® Our's was tasty. How was yours?

